MUMBAI UNIVERSITY

SEMESTER-1

ENGINEERING MECHANICS SOLVED PAPER-MAY 2017

N.B:-(1)Question no. 1 is compulsory.
(2)Attempt any 3 questions from remaining five questions.
(3)Assume suitable data if necessary,and mention the same clearly.
(4)Take $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$, unless otherwise specified.
Q.1(a) In the rocket arm shown in the figure the moment of ' F ' about ' 0 ' balances that $\mathrm{P}=250$ N.Find F .
\qquad

OUR CENTERS :

ENGINEERING

Solution :

Given : $\mathrm{P}=250 \mathrm{~N}$
To find : Magnitude of force F
Solution :

$\tan \alpha=\frac{1}{2}$

$$
=0.5
$$

$\alpha=26.5651^{\circ}$
$\tan \theta=\frac{D E}{A D}=\frac{D E}{B C}=\frac{3}{4}=0.75$
$\theta=36.87^{\circ}$
$\angle \mathrm{CBD}=\angle \mathrm{PBD}=\theta=36.87^{\circ}$
$\angle \mathrm{CBP}=2 \theta=2 \times 36.87=73.74^{\circ}$
It is given that at O the moment of F about O balances the moment of P
$\mathrm{F} \cos \alpha \times \mathrm{OA}=\mathrm{P} \sin 2 \theta \times \mathrm{OB}$
Fcos $26.5651 \times 6=250 \sin 73.74 \times 5$
$\mathrm{F}=223.6068 \mathrm{~N}$

Q.1(b) State Lami's theorem.

State the necessary condition for application of Lami's theorem.

Answer :

Lami's theorem states that if three forces acting at a point are in equilibrium, each force is proportional to the sine of the angle between the other two forces.

According to Lami's theorem, the particle shall be in equilibrium if :
$\frac{A}{\sin \alpha}=\frac{B}{\sin \beta}=\frac{C}{\sin \gamma}$
The conditions of Lami's theorem are:
(1)Exact 3 forces must be acting on the body.
(2)All the forces should be either converging or diverging from the body.
Q.1(c)A homogeneous cylinder 3 m diameter and weighing 400 N is resting on two rough inclined surface's shown.If the angle of friction is 15°. Find couple C applied to the cylinder that will start it rotating clockwise.

Solution :
Given : Angle of friction is 150

$$
\mu=\tan 15=0.2679
$$

Radius $=1.5 \mathrm{~m}$
To find : Couple C

Solution:

OUR CENTERS :
$\mathrm{F}_{1}=\mu \mathrm{N}_{1}=0.2679 \mathrm{~N}_{1}$
$\mathrm{F}_{2}=\mu \mathrm{N}_{2}=0.2679 \mathrm{~N}_{2}$
Assuming the body is in equilibrium
$\mathbf{\Sigma F x}=\mathbf{0}$
$\mathrm{F}_{1} \cos 40+\mathrm{N}_{1} \sin 40+\mathrm{F}_{2} \cos 60-\mathrm{N}_{2} \sin 60=0$
$\mathrm{N}_{1}(0.2679 \cos 40+\sin 40)+\mathrm{N}_{2}(0.2679 \cos 60-\sin 60)=0$
$\Sigma \mathrm{Fy}=0$
$-\mathrm{F}_{1} \sin 40+\mathrm{N}_{1} \cos 40+\mathrm{F}_{2} \sin 60+\mathrm{N}_{2} \cos 60-400=0$
$\mathrm{N}_{1}(-0.2679 \sin 40+\cos 40)+\mathrm{N}_{2}(0.2679 \sin 60+\cos 60)=400$
(4)

Solving (3) and (4)
$\mathbf{N}_{1}=277.4197 \mathrm{~N}$ and $\mathrm{N}_{2}=321.3785 \mathrm{~N}$

Substituting N1 and N2 in (1 and 2)
$\mathrm{F}_{1}=0.2679 \times 277.4197=74.3344 \mathrm{~N}$
$\mathrm{F}_{2}=0.2679 \times 321.3785=86.1131 \mathrm{~N}$
C is the couple required to rotate the cylinder clockwise
$\mathrm{C}=\mathrm{F}_{1} \times \mathrm{r}+\mathrm{F}_{2} \times \mathrm{r}$
$=240.6712 \mathrm{Nm}$ (clockwise) $\quad(\mathrm{r}=1.5 \mathrm{~m})($ From 5)

The couple C required to rotate the cylinder clockwise is 240.6712 Nm (clockwise)
Q.1(d) From (v-t) diagram find
(1) Distance travelled in 10 second.
(2) Total distance travelled in 50 second.
(3) Retardation

Solution:

We know that the area under v-t graph gives the distance travelled
DISTANCE TRAVELLED IN 0 TO $10 \mathrm{sec}=\mathrm{A}(\triangle \mathrm{OAB})$

$$
\begin{aligned}
& =\frac{1}{2} \times \mathrm{OA} \times \mathrm{AB} \\
& =\frac{1}{2} \times 10 \times 10 \\
& =\mathbf{5 0} \mathbf{m}
\end{aligned}
$$

DISTANCE TRAVELLED IN 0 TO 50 sec = A(Trapezium OBDE)

$$
\begin{aligned}
& =\frac{1}{2} \times(\mathrm{OE}+\mathrm{BD}) \times \mathrm{AB} \\
& =\frac{1}{2} \times(50+10) \times 10 \\
& =\mathbf{3 0 0} \mathbf{m}
\end{aligned}
$$

CONSIDER THE MOTION FROM 20 sec TO 50 sec
We know that slope of v-t graph gives acceleration
$\mathrm{E}=(50,0)$ and $\mathrm{D}=(20,10)$
Slope of line $D E=\frac{0-10}{50-20}=\frac{-1}{3}=-0.3333 \mathrm{~m} / \mathrm{s}^{2}$

Distance travelled by object in $10 \mathrm{sec}=50 \mathrm{~m}$
Distance travelled by object in $50 \mathrm{sec}=300 \mathrm{~m}$
Acceleration $=\mathbf{- 0 . 3 3 3 3} \mathrm{m} / \mathrm{s} 2$

Q1(e))Blocks P_{1} and P_{2} are connected by inextensible string. Find velocity of block P_{1}, if it falls by 0.6 m starting from rest.

The co-efficient of friction is 0.2 .The pulley is frictionless.
(4 marks)
\qquad

Solution:

Given : P_{1} falls by 0.6 m starting from rest

$$
\mu=0.2
$$

To find: Velocity of block P_{1}

Solution :

Consider the motion of block P_{2}
Weight of motion $\mathrm{P}_{2}=8 \mathrm{~N}$
Mass of $\mathrm{P}_{2}=\frac{\mathbf{8}}{\boldsymbol{g}}$
P2 has no vertical motion
$\boldsymbol{\Sigma F} \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{N}_{2}-8=0$
$\mathrm{N}_{2}=8 \mathrm{~N}$
$\mathrm{F}_{2}=\mu \mathrm{N}_{2}$
$=1.6 \mathrm{~N}$
Consider the horizontal motion
$\boldsymbol{\Sigma} \mathrm{F}_{\mathrm{x}}=\mathbf{m}_{2} \mathbf{a}$
$\mathrm{T}-\mathrm{F}_{2}=\mathrm{m}_{2} \mathrm{a}$
$\mathrm{T}=1.6+\frac{8}{g} \mathrm{a}$
For block P_{1}
Weight of $P_{1}=4 \mathrm{~N}$
Mass of $\mathrm{P}_{1}=\frac{\mathbf{4}}{\boldsymbol{g}}$ \qquad
For downward motion
$\Sigma F_{y}=m_{1} \mathbf{a}$
$4-\mathrm{T}=\mathrm{m}_{1} \mathrm{a}$
$4-1.6-\frac{8}{g} \mathrm{a}=\frac{4}{g} \mathrm{a}$
(From 1 and 2)
$\mathrm{a}=1.962 \mathrm{~m} / \mathrm{s}^{2}$
$v^{2}=u^{2}+2 a s$
$\mathrm{u}=0$ and $\mathrm{s}=1.6 \mathrm{~m}$
Substituting the values in equation
$\mathrm{v}=\mathbf{1 . 5 3 4 4} \mathrm{m} / \mathrm{s}$

Velocity of block $P_{1}=1.5344 \mathrm{~m} / \mathrm{s}$ (towards down)

Q2(a) Compute the resultant of three forces acting on the plate shown in the figure. Locate it's intersection with $A B$ and $B C$.
(6 marks)

Solution :

Given : Various forces acting on a body
To find : Resultant of the forces and intersection of resultant with AB and BC
Solution:

In $\Delta \mathrm{AFG}$,
$\tan \alpha=\frac{A G}{A F}=\frac{D E}{B H}=\frac{3}{2}=1.5$
$\alpha=\boldsymbol{\operatorname { t a n }}^{-1}(1.5)=56.31^{\circ}$

In \triangle DAE,
$\tan \theta=\frac{D E}{A D}=\frac{D E}{B C}=\frac{3}{4}=0.75$
$\theta=\boldsymbol{\operatorname { t a n }}^{-1} \mathbf{0} .75=36.87^{\circ}$

In $\triangle \mathrm{DHC}$
$\tan \beta=\frac{D C}{H C}=\frac{6}{2}=3$
$\beta=\tan ^{-1}(3)$
$\beta=71.565^{\circ}$
Assume R be the resultant of the forces

$$
\begin{aligned}
\Sigma \mathrm{F}_{\mathrm{x}} & =-722 \cos \alpha+1000 \cos \theta+632 \cos \beta \\
& =\mathbf{5 9 9 . 3 6 2 4} \mathbf{N} \\
\Sigma \mathrm{F}_{\mathrm{y}} & =-722 \sin \boldsymbol{\alpha}-1000 \sin \theta+632 \sin \beta \\
& =\mathbf{- 6 0 1 . 1 7 2 5} \mathbf{N}
\end{aligned}
$$

$\mathrm{R}=\sqrt{(\Sigma \mathrm{Fx})^{2}+(\Sigma F y)^{2}}$
$\mathrm{R}=\sqrt{(599.3624)^{2}+(-601.1725)^{2}}$
$R=848.9073 \mathrm{~N}$

$$
\begin{aligned}
\phi & =\tan ^{-1}\left(\frac{\Sigma \mathrm{Fy}}{\Sigma \mathrm{Fx}}\right) \\
& =\tan ^{-1}\left(\frac{-601.1725}{599.3624}\right) \\
& =45.0863^{\circ} \text { (in fourth quadrant) }
\end{aligned}
$$

Let R cut $A B$ and $B C$ at points M and N respectively

Draw AL \perp R
Taking moments about point A
$M_{A}=632 \sin \beta \times A D-722 \cos \alpha \times A G$
$=632 \times \sin 71.5650 \times 4-722 \cos 56.31^{\circ} \times 3$
$=1196.7908 \mathrm{Nm}$

Applying Varigon's theorem

$\mathrm{M}_{\mathrm{A}}=\mathrm{R} \times \mathrm{AL}$
$1196.7908=848.9073 \times$ AL
AL=1.4098 m
In $\triangle \mathrm{AML}$,
$\cos \Phi=\frac{A L}{A M}$
$\cos 45.0863=\frac{1.4098}{A M}$
$\mathrm{AM}=1.9967 \mathrm{~m}$
$\mathrm{MB}=\mathrm{AB}-\mathrm{AM}$
= 6-1.9967
$=4.0033 \mathrm{~m}$
In $\triangle \mathrm{BMN}$
$\tan \Phi=\frac{B M}{B N}$
$\tan 45.0863=\frac{4.0033}{B N}$
$\mathbf{B N}=3.9912 \mathrm{~m}$
$R=848.9073 \mathrm{~N}\left(45.0863^{\circ}\right.$ in fourth quadrant $)$

Resultant force intersects $A B$ and $B C$ at M and N such that $A M=1.9967 \mathrm{~m}$ and $\mathrm{BN}=3.9912 \mathrm{~m}$
Q.2(b) Two cylinders 1 and 2 are connected by a rigid bar of negligible weight hinged to each cylinder and left to rest in equilibrium in the position shown under the application of force P applied at the center of cylinder 2.
Determine the magnitude of force P.If the weights of the cylinders 1 and 2 are 100 N and 50 N respectively.

Solution :

Given : $\mathrm{W}_{1}=100 \mathrm{~N}$

$$
\mathrm{W}_{2}=50 \mathrm{~N}
$$

Cylinders are connected by a rigid bar
To find : Magnitude of force P
Solution:
Consider cylinder I

$\mathrm{W}=100$

OUR CENTERS :

$$
W=100
$$

Applying Lami's theorem :
$\frac{R}{\sin (90+30)}=\frac{W}{\sin (60+75)}=\frac{N_{1}}{\sin (90+15)}$
$R=\frac{100}{\sin 135} \times \sin 120$
$\mathbf{R}=\mathbf{1 2 2} .4745 \mathbf{N}$

Cylinder 2 is under equilibrium

Applying conditions of equilibrium
$\Sigma \mathrm{Fy}=0$
$\mathrm{N}_{2} \sin 45-\mathrm{Rsin} 15-\mathrm{P} \sin 45-\mathrm{W}=0$
$\mathrm{N}_{2} \sin 45-\mathrm{Psin} 45=122.4745 \times 0.2588+50$
$\mathrm{N}_{2} \sin 45-\mathrm{P} \sin 45=81.6987$

Applying conditions of equilibrium
$\Sigma \mathrm{Fx}=0$
$-\mathrm{N}_{2} \cos 45+\mathrm{R} \cos 15-\mathrm{P} \cos 45=0$
$\mathrm{N}_{2} \cos 45+\mathrm{P} \cos 45=118.3013 \ldots \ldots(2)$

Solving (1) and (2)
$\mathbf{P}=\mathbf{2 5 . 8 8 1 9} \mathbf{N}$
Q.2(c) Just before they collide,two disk on a horizontal surface have velocities shown In figure.

Knowing that 90 N disk A rebounds to the left with a velocity of $1.8 \mathrm{~m} / \mathrm{s}$. Determine the rebound velocity of the 135 N disk B.Assume the impact is perfectly elastic.
(6 marks)

OUR CENTERS :

Solution :

Given: $\mathrm{W}_{\mathrm{A}}=90 \mathrm{~N}$

$$
\mathrm{W}_{\mathrm{B}}=135 \mathrm{~N}
$$

Taking velocity direction towards right as positive and towards left as negative Initial velocity of disk $A=3.6 \mathrm{~m} / \mathrm{s}$

Final velocity of disk $A=-1.8 \mathrm{~m} / \mathrm{s}$
Initial velocity of disk $B=3 \mathrm{~m} / \mathrm{s}$
To find : Rebound velocity of disk B

Solution:

$\mathrm{m}_{\mathrm{A}}=\frac{90}{g} \mathrm{~kg}$
$\mathrm{m}_{\mathrm{B}}=\frac{135}{g} \mathrm{~kg}$

Consider the X and Y components of u_{B}
$u_{B X}=-u_{B} \cos 35=-2.4575 \mathrm{~m} / \mathrm{s}$
$u_{B Y}=-\mathbf{u}_{B} \operatorname{Sin} 35=-1.7207 \mathrm{~m} / \mathrm{s}$

APPLYING LAW OF CONSERVATION OF MOMENTUM :

$\mathbf{m}_{A} \mathbf{u}_{\mathrm{A}}+\mathbf{m}_{\mathrm{B}} \mathbf{u}_{\mathrm{B}}=\mathbf{m}_{\mathrm{A}} \mathbf{v}_{\mathrm{A}}+\mathbf{m}_{\mathrm{B}} \mathbf{V}_{\mathrm{B}}$
$\frac{90}{g} \times 3.6+\frac{135}{g} \times(-2.4575)=\frac{90}{g} \times(-1.8)+\frac{135}{g} \times v_{B X}$
$\mathrm{v}_{\mathrm{BX}}=\mathbf{1 . 1 4 2 5} \mathbf{~ m} / \mathrm{s}$

As the impact takes place along X-axis,the velocities of two disks remains same along Y axis
$v_{B Y}=u_{B Y}=-1.7207 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}=\sqrt{\left(v_{B X}\right)^{2}+\left(v_{B Y}\right)^{2}}$
$\mathrm{v}=\sqrt{1.1425^{2}+(-1.7207)^{2}}$
$\mathrm{v}=2.0655 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& \alpha=\tan ^{-1}\left(\frac{-1.7207}{1.1425}\right) \\
& \boldsymbol{\alpha}=\mathbf{5 6 . 4 1 6 9}^{\mathbf{o}}
\end{aligned}
$$

VELOCITY OF DISK B AFTER IMPACT $=2.0655 \mathrm{~m} / \mathrm{s}$ (56.4169 o in fourth quadrant)
Q.3(a) Find the centroid of the shaded portion of the plate shown in the figure.
(8 marks)

Solution:
$\mathbf{Y}=\mathbf{X}$ is the axis of symmetry
The centroid would lie on this line

Sr.no.	PART	AREA(in mm2)	X co- ordinate(mm)	Ax(mm3)

1.	RECTANGLE	$=1000 \mathrm{X} \mathrm{1000}$ $=1000000$	$\frac{1000}{2}=500$	500000000
$\mathbf{2 .}$	TRIANGLE (to be removed)	$\frac{1}{2} \times 750 \times 750$ $=-281250$	$1000-\frac{750}{3}$	-210937500
$\mathbf{3 .}$	QUARTER CIRCLE (To be removed)	$\frac{\pi r^{2}}{4}$	$\frac{4 \times 750}{3 \pi}$	-140625000
	TOTAL	276963.4669		148437500

$\bar{X}=\frac{\Sigma \mathrm{Ax}}{\Sigma \mathrm{A}}=\frac{148437500}{276963.5331}=\mathbf{5 3 5 . 9 4 6} \mathbf{~ m m}$
$\bar{y}=\bar{X}=\mathbf{5 3 5 . 9 4 6} \mathbf{~ m m}$

CENTROID IS AT $(535.946,535.946) \mathrm{mm}$
Q.3(b) Co-ordinate distance are in m units for the space frame in figure.

There are 3 members $A B, A C$ and $A D$.There is a force $W=10 \mathrm{kN}$ acting at A in a vertically upward direction.

Determine the tension in AB, AC and AD .

Solution :

Given : $\mathrm{A}=(0,24,0)$

$$
\begin{aligned}
& \mathrm{B}=(0,0,-7) \\
& \mathrm{C}=(8,0,8) \\
& \mathrm{D}=(-12,0,8)
\end{aligned}
$$

To find : Tension in AB, AC and AD .

Solution :

Assume $\bar{a}, \bar{b}, \bar{c}, \bar{d}$ be the position vectors of points A,B,C,D with respect to origin O .
$\overline{O A}=\bar{a}=24 \bar{j}$
$\overline{O B}=\bar{b}=-7 \overline{\boldsymbol{k}}$
$\overline{O C}=\bar{c}=8 \overline{\boldsymbol{c}}+8 \overline{\boldsymbol{k}}$
$\overline{O D}=\bar{d}=-12 \bar{\imath}+8 \bar{k}$
$\overline{A B}=\bar{b}-\bar{a}=-24 \overline{\mathrm{j}}-7 \bar{k} \quad$ Magnitude $=25$
Unit vector $=\frac{-24 j-7 k}{25}$
$\overline{A C}=\bar{c}-\bar{a}=8(\bar{l}-3 \overline{\mathrm{j}}+\bar{k})$
Magnitude $=8 \sqrt{11}$
Unit vector $=\frac{8(\mathrm{i}-3 \mathrm{j}+\mathrm{k})}{8 \sqrt{11}}$
$\overline{A D}=\bar{d}-\bar{a}=4(-3 \bar{l}-6 \bar{j}+2 \bar{k})$
Magnitude $=28$
Unit vector $=\frac{4(-3 i-6 j+2 k)}{28}$

Assume $\mathrm{T}_{1}, \mathrm{~T}_{2}$ and T_{3} be the tensions along AB, AC and AD
$\mathrm{T}_{1}=\mathrm{T}_{1}\left(\frac{-24 \mathrm{j}-7 \mathrm{k}}{25}\right)$
$\mathrm{T}_{2}=\mathrm{T}_{2}\left(\frac{8(\mathrm{i}-3 \mathrm{j}+\mathrm{k})}{8 \sqrt{11}}\right)$
$T_{3}=T_{3}\left(\frac{4(-3 i-6 j+2 k)}{28}\right)$

A force of 10 kN is acting at point A in vertically upward direction
Applying conditions of equilibrium
$\mathbf{1 0} \mathbf{J}+\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}=\mathbf{0}$
$-10 \overline{\mathrm{j}}=\mathrm{T}_{1}\left(\frac{-24 \mathrm{j}-7 \mathrm{k}}{25}\right)+\mathrm{T}_{2}\left(\frac{8(\mathrm{i}-3 \mathrm{j}+\mathrm{k})}{8 \sqrt{11}}\right)+\mathrm{T}_{3}\left(\frac{4(-3 \mathrm{i}-6 \mathrm{j}+2 \mathrm{k})}{28}\right)$
$0 \bar{\imath}-10 \overline{\mathrm{j}}+0 \bar{k}=\mathrm{T}_{1}\left(\frac{-24 \mathrm{j}-7 \mathrm{k}}{25}\right)+\mathrm{T}_{2}\left(\frac{8(\mathrm{i}-3 \mathrm{j}+\mathrm{k})}{8 \sqrt{11}}\right)+\mathrm{T}_{3}\left(\frac{4(-3 \mathrm{i}-6 \mathrm{j}+2 \mathrm{k})}{28}\right)$
Comparing both sides of equation
$\frac{T 2}{\sqrt{11}}-\frac{3 T_{3}}{7}=0$
$\frac{-24 T_{1}}{25}-\frac{3 T_{2}}{\sqrt{11}}-\frac{6 T_{3}}{7}=-10$
$\frac{-7 T_{1}}{25} \frac{T_{2}}{\sqrt{11}}+\frac{2 T_{3}}{7}=0$

Solving the equations simultaneously
$\mathrm{T}_{1}=5.5556 \mathrm{~N}$
$\mathrm{T}_{2}=3.0955 \mathrm{~N}$
$\mathrm{T}_{3}=2.1778$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{AB}}=-5.3333 \bar{\jmath}-1.5556 \overline{\boldsymbol{k}} \\
& \mathrm{~T}_{\mathrm{AC}}=0.9333 \bar{\imath}-2.8 \bar{\jmath}+0.9333 \overline{\boldsymbol{k}} \\
& \mathrm{~T}_{\mathrm{AD}}=-0.9333 \bar{\imath}-1.8667 \bar{\jmath}+0.6222 \overline{\boldsymbol{k}}
\end{aligned}
$$

Q.3(c) A 50 N collar slides without friction along a smooth and which is kept inclined at 60° to the horizontal.

The spring attached to the collar and the support C.The spring is unstretched when the roller is at $\mathrm{A}(\mathrm{AC}$ is horizontal).

Determine the value of spring constant k given that the collar has a velocity of 2.5 m / s when it has moved 0.5 m along the rod as shown in the figure. (6 marks)

Solution:

Given : W=50 N

$$
\mathrm{AB}=\mathrm{AC}=0.5 \mathrm{~m}
$$

To find : Spring constant
Solution:

Mass of collar $=\frac{50}{g} \mathrm{~kg}$
Let us assume that $\mathrm{h}=0$ at position 2

POSITION 1 :

$\mathrm{x}=0$
$\mathrm{E}_{\mathrm{s} 1}=\frac{1}{2} \mathrm{xkx} \mathrm{x}_{1}{ }^{2}=0$
$h_{1}=0.5 \sin 60=0.433 \mathrm{~m}$
$\mathrm{PE} 1=\mathrm{mgh}_{1}=21.65 \mathrm{~J}$
$\mathrm{v}_{\mathrm{A}}=0 \mathrm{~m} / \mathrm{s}$
$\mathrm{KE}_{1}=0 \mathrm{~J}$

POSITION II :

$\mathrm{v}_{\mathrm{B}}=2.5 \mathrm{~m} / \mathrm{s}$
$\mathrm{PE}_{2}=\mathrm{mgh}=0 \mathrm{~J}$ (because $\mathrm{h}=0$)
$\mathrm{KE}_{2}=\frac{1}{2} X m v^{2}=\frac{1}{2} X \frac{50}{g} \times 2.5^{2}$

$$
=15.9276 \mathrm{~J}
$$

In $\triangle \mathrm{ABC}$
Applying cosine rule

$$
\begin{aligned}
\mathbf{B C}^{\mathbf{2}} & =\mathbf{A B}^{\mathbf{2}}+\mathbf{A} \mathbf{C}^{\mathbf{2}} \mathbf{- 2} \mathbf{X} \mathbf{A B} \mathbf{X} \mathbf{A C} \mathbf{X} \cos (\mathbf{B A C}) \\
& =0.5^{2}+0.5^{2}-2 \times 0.5 \times 0.5 \times \cos 120 \\
& =0.75 \\
\mathbf{B C} & =\mathbf{0 . 8 6 6} \mathbf{m}
\end{aligned}
$$

Un-stretched length of the spring $=0.5 \mathrm{~m}$
Extension of spring $(x)=0.866-0.5$
$=0.366 \mathrm{~m}$
$\mathrm{E}_{\mathrm{s} 2}=\frac{1}{2} \mathrm{xkx} \mathrm{x}_{2}{ }^{2}$

$$
=0.067 \mathrm{k}
$$

$\mathbf{U}_{1-2}=\mathrm{KE}_{2}-\mathrm{KE}_{1}$
$\mathrm{PE}_{1}-\mathrm{PE}_{2}+\mathrm{E}_{\mathrm{S} 1}-\mathrm{ES}_{2}=\mathrm{KE}_{2}-\mathrm{KE}_{1}$
$21.6506-0+0-0.067 \mathrm{~K}=15.9276-0$
$K=85.4343 \mathrm{~N} / \mathrm{m}$

SPRING CONSTANT IS 85.4343 N/m

Q.4(a) A boom AB is supported as shown in the figure by a cable runs from C over a small smooth pulley at D .

Compute the tension T in cable and reaction at A.Neglect the weight of the boom and size of the pulley.

Solution :
Given : Beam AB is supported by a cable
To find : Tension T in cable
Reaction at A
Solution :

$\tan \alpha=\frac{2}{1}$
$\alpha=63.4349^{\circ}$
$\tan \theta=\frac{4}{3}$
$\theta=53.13^{\circ}$

Assume H_{A} and V_{A} be the horizontal and vertical reaction forces at A

$$
\begin{aligned}
& \angle \mathrm{GCA}
\end{aligned}=\angle \mathrm{BAF}=\theta
$$

$\mathrm{AC}=\mathrm{AE}+\mathrm{EC}=0.6+0.6=1.2$
$\mathrm{AB}=\mathrm{AC}+\mathrm{CB}=1.2+0.6=1.8$
$\mathrm{AF}=\mathrm{AB} \cos \theta=1.8 \cos 53.13=1.08$
$\mathrm{AH}=\mathrm{AE} \cos \theta=0.6 \cos 53.13=0.36$

BEAM AB IS INDER EQUILIBRIUM

Applying conditions of equilibrium
$\boldsymbol{\Sigma} \mathbf{M}_{\mathrm{A}}=\mathbf{0}$
$-445 \mathrm{X} \mathrm{AF}-890 \mathrm{X} \mathrm{AH}+\mathrm{T} \sin 63.4349 \mathrm{X} \mathrm{AC}=0$
T X $0.8944 \times 1.2=445 \times 1.08+890 \times 0.36$

$$
\mathrm{T}=746.2877 \mathrm{~N}
$$

$\Sigma F_{X}=0$
$\mathrm{H}_{\mathrm{A}}-\mathrm{T} \cos 63.4349=0$
$\mathrm{H}_{\mathrm{A}}=333.75 \mathrm{~N}$
$\boldsymbol{\Sigma} \mathrm{F}_{\mathrm{Y}}=\mathbf{0}$
$\mathrm{V}_{\mathrm{A}}+\mathrm{T} \sin 63.4349-890-445=0$
$V_{A}=667.5 \mathrm{~N}$
$\mathbf{R}_{\mathrm{A}}=\sqrt{H_{A}^{2}+V_{A}^{2}}$
$\mathrm{R}_{\mathrm{A}}=\sqrt{(333.75)^{2}+(667.5)^{2}}$
$\mathrm{R}_{\mathrm{A}}=746.2877 \mathrm{~N}$
$\Phi=\tan ^{-1}\left(\frac{V_{A}}{H_{A}}\right)$
$\Phi=\tan ^{-1}\left(\frac{667.5}{333.75}\right)$

Tension in cable $=746.2877 \mathrm{~N}\left(63.43949^{\circ}\right.$ in second quadrant)
Reaction at $\mathrm{A}=746.2877 \mathrm{~N}\left(63.4395^{\circ}\right.$ in first quadrant)
Q.4(b) The acceleration of the train starting from rest at any instant is given by the expression $a=\frac{8}{v^{2}+1}$ where v is the velocity of train in m / s.

Find the velocity of the train when its displacement is 20 m and its displacement when velocity is 64.8 kmph .

Solution :

Given: $\mathrm{a}=\frac{8}{v^{2}+1}$
To find : Velocity when displacement is 20 m
Displacement when velocity is 64.8 kmph .

Solution :

$\mathrm{a}=\mathrm{v} \frac{d v}{d x}$
$\mathrm{v} \frac{d v}{d x}=\frac{8}{v^{2}+1}$
$\mathrm{v}\left(\mathrm{v}^{2}+1\right) \mathrm{dv}=8 \mathrm{dx}$
Integrating both sides
$\int \mathrm{v}\left(\mathrm{v}^{2}+1\right) \mathrm{dv}=\int 8 \mathrm{dx}$
$\frac{v^{4}}{4}+\frac{v^{2}}{2}=8 \mathrm{x}+\mathrm{c}$
Multiplying by 4 on both sides
$\mathrm{V}^{4}+2 \mathrm{v}^{2}=32 \mathrm{x}+4 \mathrm{c}$
Substituting $\mathrm{v}=0$ and $\mathrm{x}=0$ in (1)
$\mathrm{c}=\mathbf{0}$
From (1)

$$
\begin{equation*}
V^{4}+2 v^{2}=32 x \tag{2}
\end{equation*}
$$

Case 1: $\mathrm{x}=\mathbf{2 0} \mathrm{m}$
$\mathrm{V}^{4}+2 \mathrm{v}^{2}=32 \mathrm{x} 20$ \qquad (From 2)
$V^{4}+2 \mathrm{v}^{2}-640=0$
Solving the equation
$\mathrm{V}^{2}=24.3180$
$V=4.9361 \mathrm{~m} / \mathrm{s}$

Case 2: V=64.8 $\mathbf{k m p h}($ or $v=18 \mathrm{~m} / \mathrm{s}$)
$18^{4}+2 \times 18^{2}=32 \mathrm{x}$ (From 2)
$1.5624=32 \mathrm{x}$
$\mathrm{x}=3300.75 \mathrm{~m}$

When displacement of train is 20 m , then velocity is $4.9361 \mathrm{~m} / \mathrm{s}$
When velocity of the train is 64.8 kmph , then its displacement is 3300.75 m
Q.4(c) Angular velocity of connector $B C$ is $4 \mathrm{r} / \mathrm{s}$ in clockwise direction. What is the angular velocities of cranks $A B$ and CD?

Solution:

Given : Angular velocity of BC is $4 \mathrm{rad} / \mathrm{s}$
To find : Angular velocity of $A B$ and $C D$

Solution:

ICR is shown in the figure

USING GEOMETRY :
In $\triangle \mathrm{IAD}$
$\angle \mathrm{A}=\angle \mathrm{D}=60^{\circ}$
$\angle \mathrm{I}=60^{\circ}$
Δ IAD is equilateral
$\mathrm{IA}=\mathrm{ID}=\mathrm{AD}=3 \mathrm{~cm}$
$\mathrm{IB}+\mathrm{AB}=\mathrm{IA}$
IB $=\mathbf{2} \mathbf{~ c m}$
Similarly, we can solve that $\mathrm{IC}=1 \mathrm{~cm}$
$v=r \omega$
$\mathrm{v}_{\mathrm{B}}=\mathrm{IB} \times \omega_{\mathrm{BC}}=8 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}_{\mathrm{C}}=\mathrm{IC} \mathrm{x} \omega_{\mathrm{BC}}=4 \mathrm{~m} / \mathrm{s}$
$\omega_{\mathrm{AB}}=\frac{v_{B}}{A B}=\frac{8}{1}=8 \mathrm{rad} / \mathrm{s}$ (Anti-clockwise)
$\omega_{\mathrm{DC}}=\frac{v_{c}}{D C}=\frac{4}{2}=2 \mathrm{rad} / \mathrm{s}($ Anti-clockwise $)$

Angular velocity of $\mathrm{CD}=2 \mathrm{rad} / \mathrm{s}$ (Anti-clockwise)
Q.5(a) In the truss shown in figure,compute the forces in each member. (8 marks)

Solution:

We can say that FD,GH and CB are zero force members in the given truss Joint A :

Applying the conditions of equilibrium
$\Sigma \mathrm{Fy}=0$
$-1-\mathrm{F}_{\mathrm{AC}} \sin 30=0$
$F_{A C}=\mathbf{- 2 k N}$
Applying the conditions of equilibrium
$\Sigma \mathrm{Fx}=0$
$\mathrm{F}_{\mathrm{AB}}+\mathrm{F}_{\mathrm{AC}} \cos 30=0$

$$
\mathrm{F}_{\mathrm{AB}}=1.7321 \mathrm{Kn}
$$

JOINT C :

Applying the conditions of equilibrium
$\Sigma \mathrm{Fx}=0$
$F_{C E}=F_{C A}=-2 k N$

JOINT B :

Applying the conditions of equilibrium
$\Sigma \mathrm{Fy}=0$
$-1-\mathrm{F}_{\mathrm{BE}} \sin 60=0$
FBE $=\mathbf{- 1 . 1 5 4 7} \mathbf{k N}$
Applying the conditions of equilibrium
$\Sigma \mathrm{Fx}=0$
$-\mathrm{F}_{\mathrm{BA}}+\mathrm{F}_{\mathrm{BE}} \cos 60+\mathrm{F}_{\mathrm{BD}}=0$
$\mathrm{F}_{\mathrm{BD}}=\mathbf{2 . 3 0 9 4} \mathbf{~ k N}$

JOINT D :

Applying the conditions of equilibrium
$\Sigma \mathrm{Fy}=0$
$-1-\mathrm{F}_{\mathrm{DE}} \sin 60=0$
$\mathrm{F}_{\mathrm{DE}}=\mathbf{- 1 . 1 5 4 7} \mathbf{k N}$
Applying the conditions of equilibrium
$\Sigma \mathrm{Fx}=0$
$-\mathrm{F}_{\mathrm{DB}}-\mathrm{F}_{\mathrm{DE}} \cos 60+\mathrm{F}_{\mathrm{DG}}=0$
$F_{\text {DG }}=1.7321 \mathbf{k N}$

JOINT E :

Applying the conditions of equilibrium
$\Sigma \mathrm{Fy}=0$
$\mathrm{F}_{\mathrm{ED}}+\mathrm{F}_{\mathrm{EF}} \cos 30+\mathrm{F}_{\mathrm{EB}} \sin 30=0$
$\mathrm{F}_{\mathrm{EF}} \cos 30=-(-1.1547)-(-1.1547) \times \frac{1}{2}$
$F_{E F}=\mathbf{2 k N}$

Applying the conditions of equilibrium
$\Sigma \mathrm{Fx}=0$
$-\mathrm{F}_{\mathrm{EC}}+\mathrm{F}_{\mathrm{EH}}+\mathrm{F}_{\mathrm{EF}} \sin 30-\mathrm{F}_{\mathrm{EB}} \cos 30=0$
$\mathrm{F}_{\mathrm{EH}}=\mathrm{F}_{\mathrm{EC}}-\mathrm{F}_{\mathrm{EFS}} \sin 30+\mathrm{F}_{\mathrm{EB}} \cos 30$

FEH $=-\mathbf{4 k N}$

Joint F :

Applying the conditions of equilibrium
$\Sigma \mathrm{Fx}=0$
$F_{F G}=F_{F E}=-\mathbf{2 k N}$

Final answer :

Sr.no.	MEMBER	MAGNITUDE OF FORCE (in kN)	NATURE OF FORCE
$\mathbf{1 .}$	AC	2	COMPRESSION
$\mathbf{2 .}$	AB	1.7321	TENSION
$\mathbf{3 .}$	CB	0	-
$\mathbf{4 .}$	CE	COMPRESSION	
$\mathbf{5 .}$	BE	1.1547	COMPRESSION
$\mathbf{6 .}$	BD	2.3094	TENSION
$\mathbf{7 .}$	DE	1.1547	

$\mathbf{8 .}$	DG	1.7321	TENSION
$\mathbf{9 .}$	EF	2	TENSION
$\mathbf{1 0 .}$	EH	4	COMPRESSION
$\mathbf{1 1 .}$	FD	0	-
$\mathbf{1 2}$	FG	2	COMPRESSION
$\mathbf{1 3 .}$	GH	0	-

Q.5(b) Determine the speed at which the basket ball at A must be thrown at an angle 30° so that if makes it to the basket at B.

Also find at what speed it passes through the hoop.

Solution :

Given : $\theta=30^{\circ}$
To find : Speed at which basket ball must be thrown
Solution :
Assume that the basket ball be thrown with initial velocity u and it takes time t to reach B

HORIZONTAL MOTION

Here the velocity is constant
$8=u \cos 30 \mathrm{xt}$
$\mathrm{t}=\frac{8}{u \cos 30}=\frac{9.2376}{u}$
$\mathrm{v}_{\mathrm{B}}=\mathrm{u} \cos 30 \quad$ (Since velocity is constant in horizontal motion)

VERTICAL MOTION

Initial vertical velocity $\left(u_{v}\right)=u \sin 30=0.5 u$
Vertical displacement(s) $=2.4-1.2=1.2$
$\mathrm{t}=\frac{9.2376}{u}$
Using kinematical equation :
$\mathrm{s}=\mathrm{ut}+\frac{1}{2} \mathrm{x} \mathrm{at}^{2}$
$1.2=\frac{u}{2} \times \frac{9.2376}{u}-\frac{1}{2} \times 9.81 \times\left(\frac{9.2376}{u}\right)^{2}$
$u^{2}=122.4289$
$u=11.0648 \mathrm{~m} / \mathrm{s}$
$u_{v}=0.5 \mathrm{u} \quad($ From 3)
$u_{v}=0.5 \times 11.0648$

$$
=5.5324 \mathrm{~m} / \mathrm{s}
$$

Using kinematical equation
$\mathrm{v}_{\mathrm{v}}^{2}=\mathrm{u}_{\mathrm{v}}^{2}+2 \mathrm{as}$
$\mathrm{v}_{\mathrm{v}}{ }^{2}=5.5324^{2}-2 \times 9.81 \times 1.2$
$\mathrm{v}_{\mathrm{v}}=\mathbf{2 . 6 6 2 2} \mathrm{m} / \mathrm{s}$
$\mathrm{v}_{\mathrm{h}}=11.0648 \cos 30=9.5824 \mathrm{~m} / \mathrm{s}($ From 2)
$\mathrm{v}_{\mathrm{B}}=\sqrt{v_{v}^{2}+v_{h}^{2}}$
$\mathrm{v}_{\mathrm{B}}=\mathbf{9 . 9 4 4 1 \mathrm { m } / \mathrm { s }}$

$$
\begin{aligned}
\alpha & =\tan ^{-1}\left(\frac{2.6577}{9.5824}\right) \\
& =15.5015^{\circ}
\end{aligned}
$$

Speed at which the basket-ball at A must be thrown $=11.0648 \mathrm{~m} / \mathrm{s}$ (30° in first quadrant)

Speed at which the basket-ball passes through the hoop $=9.9441 \mathrm{~m} / \mathrm{s}\left(15.5015^{\circ}\right.$ in fourth quadrant)
Q.5(c) Figure shows a collar B which moves upwards with constant velocity of 1.5 m / s.At the instant when $\theta=50^{\circ}$.Determine :
(i)The angular velocity of rod pinned at B and freely resting at A against 250 sloping ground.
(ii)The velocity of end A of the rod.

Solution:

ICR is shown in the given figure
BY USING GEOMETRY:
In $\triangle \mathrm{ABC}$
$\angle \mathrm{ABC}=50$
$\angle \mathrm{ACB}=90$
$\angle \mathrm{BAC}=40$
$\angle \mathrm{CAV}=25$
$\angle \mathrm{BAV}=40-25=15$
$\mathbf{I A} \perp \mathbf{V}_{\mathrm{A}}$
$\angle \mathrm{IAB}=90-15=75$
$\angle \mathrm{IBA}=90-50=40$
In \triangle IBA
$\angle \mathrm{BIA}=180-75=65$
In \triangle IBA
$\mathrm{AB}=1.2 \mathrm{~m}$

APPLYING SINE RULE

$\frac{A B}{\sin I}=\frac{I B}{\sin A}=\frac{I A}{\sin B}$
$\frac{1.2}{\sin 65}=\frac{I B}{\sin 75}=\frac{I A}{\sin 40}$

IB=1.2789 m
IA $=\mathbf{0 . 8 5 1 1} \mathrm{m}$
Assume $\omega_{A B}$ be the angular velocity of $A B$
$\omega_{\mathrm{AB}}=\frac{v_{B}}{r}=\frac{v_{B}}{I B}=\frac{1.5}{1.2789}=1.1728 \mathrm{rad} / \mathrm{s}$
$\mathrm{v}_{\mathrm{A}}=\mathrm{r} \times \mathrm{AB}=\mathrm{IA} \times \omega_{\mathrm{AB}}=0.8511 \times 1.7288=0.99825 \mathrm{~m} / \mathrm{s}$

Angular velocity of rod $\mathrm{AB}=1.1728$ rads (Anti-clockwise) Instantaneous velocity of $A=0.9982 \mathrm{~m} / \mathrm{s}$ (25° in first quadrant)
Q.6(a) A force of 140 kN passes through point $\mathrm{C}(-6,2,2)$ and goes to point $\mathrm{B}(6,6,8)$. Calculate moment of force about origin.

Solution :

Given: $\mathrm{C}(-6,2,2)$
B $(6,6,8)$
To find : Moment of force about origin

Solution :

Assume \bar{b} and \bar{c} be the position vectors of points B and C respectively w.r.t $\mathrm{O}(0,0,0)$
$\overline{O B}=\bar{b}=6 \bar{\imath}+6 \bar{\jmath}+8 \bar{k}$
$\overline{O C}=-6 \bar{\imath}+2 \bar{\jmath}+2 \bar{k}$
$\overline{C B}=(6 \bar{\imath}+6 \bar{\jmath}+8 \bar{k})-(-6 \bar{\imath}+2 \bar{\jmath}+\bar{k})$
$=2(6 \bar{\imath}+2 \bar{\jmath}+3 \bar{k})$
$|\overline{C B}|=2 \times \sqrt{6^{2}+2^{2}+3^{2}}$
$=14$
Unit vector along $\overline{C B}=\frac{C B}{|C B|}=\frac{6 i+2 j+3 k}{7}$

Force along $\overline{C B}=\bar{F}=140 \times \frac{6 i+2 j+3 k}{7}$

$$
=120 \bar{\imath}+40 \bar{\jmath}+60 \bar{k}
$$

Moment of \bar{F} about $\mathrm{O}=\overline{O B} \times \bar{F}$

i	j	k
6	6	8
120	40	60

$=40 \bar{\imath}+600 \bar{\jmath}-480 \mathrm{k}$

Moment of F about C is $40 \bar{\imath}+600 \bar{\jmath}-480 \bar{k} \mathrm{kNm}$
Q.6(b) Refer to figure.If the co-efficient of friction is 0.60 for all contact surfaces and θ $=30^{\circ}$, what force P applied to the block B acting down and parallel to the incline will start motion and what will be the tension in the cord parallel to inclined plane attached to A.

Take $\mathrm{W}_{\mathrm{A}}=120 \mathrm{~N}$ and $\mathrm{W}_{\mathrm{B}}=200 \mathrm{~N}$.
(8 marks)
\qquad

Solution:

Given : : $\mu=0.6$

$$
\begin{aligned}
& \theta=30^{\circ} \\
& \mathrm{W}_{\mathrm{A}}=120 \mathrm{~N}
\end{aligned}
$$

$$
\mathrm{W}_{\mathrm{B}}=200 \mathrm{~N}
$$

To find : Force P

Solution:

$\mathrm{F}_{1}=\mu \mathrm{N}_{1}=0.6 \mathrm{~N}_{1}$
$\mathrm{F}_{2}=\mu \mathrm{N}_{2}=0.6 \mathrm{~N}_{2}$

Consider FBD of block A

The block is considered to be in equilibrium
Applying conditions of equilibrium
$\Sigma \mathrm{Fy}=0$
$\mathrm{N}_{1}-120 \cos 30=0$
$\mathrm{N}_{1}=103.923 \mathrm{~N}$
From (1)
$\mathrm{F}_{1}=0.6 \times 103.923$

$$
=62.3538 \mathrm{~N}
$$

Applying conditions of equilibrium
$\Sigma \mathrm{Fx}=0$
$\mathrm{F}_{1}+120 \sin 30-\mathrm{T}=0$
$\mathrm{T}=\mathbf{1 2 2 . 3 5 3 8} \mathrm{N}$

Consider FBD of block B
Applying conditions of equilibrium
$\Sigma \mathrm{Fy}=0$
$\mathrm{N}_{2}-\mathrm{N}_{1}-200 \cos 30=0$
$\mathbf{N}_{2}=\mathbf{2 7 7 . 1 2 8 1} \mathbf{N}$
$\mathrm{F}_{2}=0.6 \times 277.1281$
$=166.2769 \mathrm{~N} \quad$ From (2)
Applying conditions of equilibrium
$\Sigma \mathrm{Fx}=0$
$\mathrm{P}-\mathrm{F}_{1}-\mathrm{F}_{2}+200 \sin 30=0$
$\mathrm{P}=\mathbf{1 2 8 . 6 3 0 7} \mathrm{N}$

Force required on block B to start the motion is 128.6307 N
Tension T in the cord parallel to inclined plane attached to $\mathrm{A}=122.3538 \mathrm{~N}$
Q.6(c) Determine the required stiffness k so that the uniform 7 kg bar AC is in equilibrium when $\theta=30^{\circ}$.

Due to the collar guide at B the spring remains vertical and is unstretched when θ $=0^{\circ}$.Use principle of virtual work.

Solution:

Given : : Mass of bar AC $=7 \mathrm{~kg}$
$\theta=30^{\circ}$
To find : Required stiffness k

Solution:

Weight of rod $=7 \mathrm{~g} \mathrm{~N}$
Assume rod AC have a small virtual angular displacement $\delta \theta$ in anti-clockwise direction
Reaction forces H_{A} and V_{A} do not do any virtual work
Un-stretched length of the spring $=\mathrm{BD}$
Extension of the spring $(x)=C D=2 \sin \theta$
Assume F_{S} be the spring force at end C of the rod
$\mathbf{F}_{\mathrm{S}}=\mathbf{K x}=\mathbf{2 K} \sin \boldsymbol{\theta}$
Assume A to be the origin and AD be the X -axis of the system

Active force	Co-ordinate of the point of action along the force	Virtual Displacement
$\mathbf{W}=\mathbf{7 g}$	$-\sin \theta$	$\boldsymbol{\delta} \mathbf{y M}=-\cos \theta \boldsymbol{\delta} \theta$
$\mathbf{F S}=\mathbf{2 K} \sin \boldsymbol{\theta}$	$-2 \sin \theta$	$\boldsymbol{\mathbf { y C }}{ }^{\prime}=-\mathbf{2} \cos \theta \boldsymbol{\delta} \theta$

APPLYING PRINCIPLE OF VIRTUAL WORK

$\delta \mathrm{U}=0$
$-\mathrm{WX} \delta_{\mathrm{Ym}}+\mathrm{Fs}_{\mathrm{X}} \delta \mathrm{Y}_{\mathrm{C}}+50 \mathrm{X} \delta \theta=0$
$2 \mathrm{~K} \sin \theta \mathrm{x}(-2 \cos \theta \delta \theta)=7 \mathrm{gx}(-\cos \theta \delta \theta)-50 \mathrm{x} \delta \theta$
Substituting the value of θ and solving
$K=63.2025 \mathrm{Nm}$

The required stiffness K for bar AC to remain in equilibrium is 63.2025 Nm

Q.6(d) The system in figure is initially at rest.

Neglecting friction determine the force P required if the velocity of the collar is $5 \mathrm{~m} / \mathrm{s}$ after 2 sec and corresponding tension in the cable.
(4 marks)

Solution :

For block B
$\mathrm{u}=0$
$\mathrm{t}=2 \mathrm{~s}$
$\mathrm{v}=5 \mathrm{~m} / \mathrm{s}$
$\mathrm{a}=\frac{5-0}{2}=2.5 \mathrm{~m} / \mathrm{s}^{2}$
Assume the string across the two pulleys be of length L
Assume x_{A} and x_{B} be the displacements of block A and collar B respectively
Assume $\mathrm{k}_{1}, \mathrm{k}_{2}$ and k_{3} be the lengths of the string which remain constant irrespective of the position of block A and block B

OUR CENTERS :
$\mathrm{k}_{1}+\mathrm{x}_{\mathrm{B}}+\mathrm{k}_{2}+\mathrm{x}_{\mathrm{B}}+\mathrm{k}_{3}+\mathrm{x}_{\mathrm{A}}=\mathrm{L}$
$\mathbf{x}_{\mathrm{A}}=\mathbf{L}-\mathrm{k}_{\mathbf{1}}-\mathrm{k}_{\mathbf{2}}-\mathrm{k}_{\mathbf{3}}-\mathbf{2 x}_{\mathbf{B}}$
Differentiating with respect to time
$v_{A}=-2 v_{B}$
Differentiating with respect to time one again
$\mathrm{a}_{\mathrm{A}}=-2 \mathrm{a}_{\mathrm{B}}$
Considering only magnitude
$\mathbf{a}_{\mathrm{A}}=\mathbf{2} \mathbf{a}_{\mathrm{B}}$
$\mathrm{a}_{\mathrm{A}}=2 \times 2.5$
$=5 \mathrm{~m} / \mathrm{s}^{2}$
(2) (From 1)

Weight of block $\mathrm{A}(\mathrm{WA})=\mathrm{m}_{\mathrm{A}} \mathrm{g}$

$$
=14.715 \mathrm{~N}
$$

Assume T to be the tension in the string
Consider the vertical motion of block A
F.B.D of block A

$\Sigma \mathrm{Fy}=\mathrm{m}_{\mathrm{A}} \mathrm{a}_{\mathrm{A}}$
$\mathrm{T}-\mathrm{W}_{\mathrm{A}}=\mathrm{m}_{\mathrm{A}} \mathrm{a}_{\mathrm{A}}$
$\mathrm{T}-14.715=1.5 \times 5$
$\mathrm{T}=\mathbf{2 2} .215 \mathrm{~N}$

Consider the horizontal motion of collar B
F.B.D of collar B

$\Sigma \mathrm{Fx}=\mathrm{m}_{\text {в }} \mathrm{a}_{\mathrm{B}}$
P-2T $=$ m $_{\text {B }}$ a $_{B}$
P-2x22.215 $=3 \times 2.5$
$P=51.93 \mathrm{~N}$

Force P required $=51.93 \mathrm{~N}$
Tension in the cable $=22.215 \mathrm{~N}$

